查看原文
其他

打通实时流处理log4j-flume-kafka-structured-streaming

大数据技术与架构点击右侧关注,大数据开发领域最强公众号!

暴走大数据点击右侧关注,暴走大数据!

模拟产生log4j日志

jar包依赖 pom.xml

1
2
3
4
5
6
7
8
9
10
11
12
13
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</dependency>
<dependency>
<groupId>org.apache.flume.flume-ng-clients</groupId>
<artifactId>flume-ng-log4jappender</artifactId>
<version>1.8.0</version>
</dependency>


java代码 LoggerGenerator.java


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public class LoggerGenerator {

private static Logger logger = Logger.getLogger(LoggerGenerator.class.getName());

public static void main(String[] args) throws Exception{

int index = 0;
while(true) {
Thread.sleep(1000);
logger.info("value : " + index++);
}

// $ kafka-topics.sh --list --zookeeper 127.0.0.1:2181
}
}


log4j.properties配置


1
2
3
4
5
6
7
8
9
10
11
12
log4j.rootLogger=INFO,stdout,flume

log4j.appender.stdout = org.apache.log4j.ConsoleAppender
log4j.appender.stdout.target = System.out
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} [%t] [%c] [%p] - %m%n


log4j.appender.flume = org.apache.flume.clients.log4jappender.Log4jAppender
log4j.appender.flume.Hostname = 127.0.0.1
log4j.appender.flume.Port = 44444
log4j.appender.flume.UnsafeMode = true


kafka broker启动

提前创建好topic【不是必须的】
flume-ng启动后,启动一个kafka console consulmer观察数据


1
2
3
$ kafka-server-start.sh $KAFKA_HOME/config/server.properties

$ kafka-topics.sh --create --zookeeper 127.0.0.1:2181 --replication-factor 1 --partitions 1 --topic default_flume_topic


flume-ng配置和启动

前面文章用过的avro-memory-kafka.conf


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# avro-memory-kafka.conf

# Name the components on this agent
avro-memory-kafka.sources = avro-source
avro-memory-kafka.sinks = kafka-sink
avro-memory-kafka.channels = momory-channel

# Describe/configure the source
avro-memory-kafka.sources.avro-source.type = avro
avro-memory-kafka.sources.avro-source.bind = 127.0.0.1
avro-memory-kafka.sources.avro-source.port = 44444

# Describe the sink
# Must be set to org.apache.flume.sink.kafka.KafkaSin
avro-memory-kafka.sinks.kafka-sink.type = org.apache.flume.sink.kafka.KafkaSink
avro-memory-kafka.sinks.kafka-sink.kafka.bootstrap.servers = 127.0.0.1:9092
avro-memory-kafka.sinks.kafka-sink.kafka.topic = default_flume_topic

# Use a channel which buffers events in memory
avro-memory-kafka.channels.momory-channel.type = memory
avro-memory-kafka.channels.momory-channel.capacity = 1000
avro-memory-kafka.channels.momory-channel.transactionCapacity = 100

# Bind the source and sink to the channel
avro-memory-kafka.sources.avro-source.channels = momory-channel
avro-memory-kafka.sinks.kafka-sink.channel = momory-channel


启动flume-ng


1
2
3
$ nohup flume-ng agent --conf conf --conf-file conf/avro-memory-kafka.conf --name avro-memory-kafka > avro-memory-kafka.out 2>&1 &

$ kafka-console-consumer.sh --bootstrap-server 127.0.0.1:9092 --topic default_flume_topic --from-beginning --new-consumer


spark structured streaming实时流处理


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
topic = 'kafka_streaming_topic'
brokers = "127.0.0.1:9092"

spark = SparkSession.builder.appName("log4j-flume-kafka-structured-streaming").getOrCreate()

lines = spark.readStream.format("kafka").option("kafka.bootstrap.servers", brokers).option("subscribe", topic).option("startingOffsets", """{"%s":{"0": 7}}""" % topic).load().selectExpr("CAST(value AS STRING)")

# 自定义处理传输的数据-比如JSON串
words = lines.select(
explode(
split(lines.value, ' ')
).alias('word')
)
word_counts = words.groupBy('word').count()

query = word_counts.writeStream.outputMode("complete").format("console").start()
query.awaitTermination()


欢迎点赞+收藏+转发朋友圈素质三连


文章不错?点个【在看】吧! 👇

: . Video Mini Program Like ,轻点两下取消赞 Wow ,轻点两下取消在看

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存